ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Podgorbunskii A. B., Sokolov A. A., Ustinov A. Y., Kuryavyi V. G., Maiorov V. Y. Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion Batteries. Electrochemical Energetics, 2019, vol. 19, iss. 3, pp. 123-?. DOI: 10.18500/1608-4039-2019-19-3-123-140, EDN: DXWFAS

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 70)
Language: 
Russian
Article type: 
Article
EDN: 
DXWFAS

Manganese-Doped Titanium Dioxide with Improved Electrochemical Performance for Lithium-Ion Batteries

Autors: 
Opra Denis Pavlovich, Institute of Chemistry of Far-Easter Branch of RAS
Gnedenkov Sergei Vasil'evich, Institute of Chemistry of Far-Easter Branch of RAS
Sinebryukhov Sergei Leonidovich, Institute of Chemistry of Far-Easter Branch of RAS
Podgorbunskii Anatolii Borisovich, Institute of Chemistry of Far-Easter Branch of RAS
Sokolov Aleksandr Aleksandrovich, Institute of Chemistry of Far-Easter Branch of RAS
Ustinov Aleksandr Yur'evich, Institute of Chemistry of Far-Easter Branch of RAS
Kuryavyi Valerii Georgievich, Institute of Chemistry of Far-Easter Branch of RAS
Maiorov Vitalii Yur'evich, Institute of Chemistry of Far-Easter Branch of RAS
Abstract: 

Within the work, an influence of manganese dopant on electrochemical performance of anatase titanium dioxide (Mn/Ti = 0.05; 0.1; 0.2) had been investigated. It was established that incorporation of Mn3+ into the TiO2 lattice results in the formation of Ti1 ? xMnxO2 solid solution and increased anatase unit cell volume from 136.41 A3 (undoped sample) to 137.25 A3 (Mn/Ti = 0.05). The conductivity of doped TiO2 rises up to two orders in magnitude. Ti0.95Mn0.05O2 electrode delivers a capacity of 186 mA?h/g after 30 charge/discharge cycles at C/10, whereas the undoped TiO2 gives only 87 mA?h/g. At a high current rate of 2С the doped TiO2 (Mn/Ti = 0.05) maintains a reversible capacity of about 121 mA?h/g.

Reference: 

1. Kulova T. L. New electrode materials for lithium-ion batteries (Review). Russ. J. Electrochem., 2013, vol. 49, pp. 1–25. DOI: https://doi.org/10.1134/S1023193512020085

2. Ivanishchev A. V., Ushakov A. V., Ivanishcheva I. A., Churikov A. V., Mironov A. V., Fedotov S. S., Khasanova N. R., Antipov E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim. Acta, 2017, vol. 230, pp. 479–491. DOI: https://doi.org/10.1016/j.electacta.2017.02.009

3. Fehse M., Ventosa E. Is TiO2(B) the future of titanium-based battery materials? ChemPlusChem, 2015, vol. 80, pp. 785–795. DOI: https://doi.org/10.1002/cplu.201500038

4. Khan M. A., Yang J., Kang Y.-M. Facile synthesis of low cost anatase titania nanotubes and its electrochemical performance. Electrochim. Acta, 2015, vol. 182, pp. 629–638. DOI: https://doi.org/10.1016/j.electacta.2015.09.149

5. Madej E., La Mantia F., Mei B., Klink S., Muhler M., Schuhmann W., Ventosa E. Reliable benchmark material for anatase TiO2 in Li-ion batteries : On the role of dehydration of commercial TiO2. J. Power Sources, 2014, vol. 266, pp. 155–161. DOI: https://doi.org/10.1016/j.jpowsour.2014.05.018

6. Armstrong G., Armstrong A. R., Bruce P. G., Reale P., Scrosati B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. J. Adv. Mater., 2006, vol. 18, pp. 2597–2600. DOI: https://doi.org/10.1002/adma.200601232

7. Makhov S. V., Ushakov A. V., Ivanishchev A. V., Gridina N. A., Churikov A. V., Gamayunova I. M., Volynskii V. V., Klyuev V. V. Peculiarities of lithium pentatitanate and lithium-vanadium(III) phosphate joint operation in the lithium-accumulating system. Electrochemical Energetics, 2017, vol. 17, no. 2. pp. 99–119. DOI: https://doi.org/10.18500/1608-4039-2017-2-99-119 (in Russian)

8. Ushakov A. V., Makhov S. V., Gridina N. A., Ivanishchev A. V., Gamayunova I. M. Rechargeable lithium-ion system based on lithium-vanadium(III) phosphate and lithium titanate and the peculiarity of it functioning. Monatsh. Chem., 2019, vol. 150, iss. 3. pp. 499–509. DOI: https://doi.org/10.1007/s00706–019–2374–4

9. Redel K., Kulka A., Plewa A., Molendaz J. High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries. J. Electrochem. Soc., 2019, vol. 166, pp. A5333–A5342. DOI: https://doi.org/10.1149/2.0511903jes

10. Game O., Kumari T., Singh U., Aravindan V., Madhavi S., Ogale S. B. (001) faceted mesoporous anatase TiO2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2016, vol. 3, pp. 106–112. DOI: https://doi.org/10.1016/j.ensm.2016.01.012

11. Jeong J.-H., Jung D., Shin E. W., Oh E.-S. Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J. Alloys Compd., 2014, vol. 604, pp. 226–232. DOI: https://doi.org/10.1016/j.jallcom.2014.03.069

12. Han C., Yang D., Yang Y., Jiang B., He Y., Wang M., Song A.-Y., He Y.-B., Li B., Lin Z. Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mater. Chem. A, 2015, vol. 3, pp. 13340–13349. DOI: https://doi.org/10.1039/c5ta02070k

13. Lupo F. Di, Tuel A., Mendez V., Francia C., Meligrana G., Bodoardo S., Gerbaldi C. Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Mater., 2014, vol. 69, pp. 60–67. DOI: https://doi.org/10.1016/j.actamat.2014.01.057

14. Yi T.-F., Yang S.-Y., Xie Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 5750–5777. DOI: https://doi.org/10.1039/C4TA06882C

15. Lewis C. S., Li Y. R., Wang L., Li J., Stach E. A., Takeuchi K. J., Marschilok A. C., Takeuchi E. S., Wong S. S. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustainable Chem. Eng., 2016, vol. 4, pp. 6299–6312. DOI: https://doi.org/10.1021/acssuschemeng.6b00763

16. Kyeremateng N. A., Vacandio F., Sougrati M.-T., Martinez H., Jumas J.-C., Knauth P., Djenizian T. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries. J. Power Sources, 2013, vol. 224, pp. 269–277. DOI: https://doi.org/10.1016/j.jpowsour.2012.09.104

17. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Modin E. B., Podgorbunsky A. B., Sushkov Y. V., Zheleznov V. V. Characterization and electrochemical properties of nanostructured Zr-doped anatase TiO2 tubes synthesized by sol-gel template route. J. Mater. Sci. Technol., 2017, vol. 33, pp. 527–534. DOI: https://doi.org/10.1016/j.jmst.2016.11.011

18. Gnedenkov S. V., Sinebryukhov S. L., Zheleznov V. V., Opra D. P., Voit E. I., Modin E. B., Sokolov A. A., Ustinov A. Yu., Sergienko V. I. Effect of Hf-doping on electrochemical performance of anatase TiO2 as an anode material for lithium storage. Royal Society Open Science, 2018, vol. 58, article ID 171811. DOI: https://doi.org/10.1098/rsos.171811

19. Lai Y., Liu W., Fang J., Qin F., Wang M., Yu F., Zhang K. Fe-doped anatase TiO2/carbon composite as an anode with superior reversible capacity for lithium storage. RSC Advances, 2015, vol. 5, pp. 93676–93683. DOI: https://doi.org/10.1039/c5ra19518g

20. Thi T. V., Rai A. K., Gim J., Kim S., Kim J. Effect of Mo6+ doping on electrochemical performance of anatase TiO2 as a high performance anode material for secondary lithium-ion batteries. J. Alloys Compd., 2014, vol. 598, pp. 16–22. DOI: https://doi.org/10.1016/j.jallcom.2014.02.019

21. Wang Y., Smarsly B. M., Djerdj I. Niobium doped TiO2 with mesoporosity and its application for lithium insertion. Chem. Mater., 2010, vol. 22, pp. 6624–6631. DOI: https://doi.org/10.1021/cm1020977

22. Wang Y., Chen T., Mu Q. Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. J. Mater. Chem., 2011, vol. 21, pp. 6006–6013. DOI: https://doi.org/10.1039/c0jm04275g

23. Ali Z., Cha S. N., Sohn J. I., Shakir I., Yan C., Kim J. M., Kang D. J. Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 17625–17629. DOI: https://doi.org/10.1039/c2jm33315e

24. Anh L. T., Rai A. K., Thi T. V., Gim J., Kim S., Shin E.-C., Lee J.-S., Kim J. Improving the electrochemical performance of anatase titanium dioxide by vanadium doping as an anode material for lithium-ion batteries. J. Power Sources, 2013, vol. 243, pp. 891–898. DOI: https://doi.org/10.1016/j.jpowsour.2013.06.080

25. Xie J., Jiang D., Chen M., Li D., Zhu J., Lu X., Yan C. Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf., A : Physicochemical and Engineering Aspects, 2010, vol. 372, pp. 107–114. DOI: https://doi.org/10.1016/j.colsurfa.2010.09.037

26. Opra D. P., Gnedenkov S. V., Sinebryukhov S. L., Voit E. I., Sokolov A. A., Ustinov A. Yu., Zheleznov V. V. Zr4+/F? co-doped TiO2(anatase) as high performance anode material for lithium-ion battery. Progress in Natural Science : Materials International, 2018, vol. 28, pp. 542–547. DOI: https://doi.org/10.1016/j.pnsc.2018.08.001

27. Lin C. Y. W., Nakaruk A., Sorrell C. C. Mn-doped titania thin films prepared by spin coating. Prog. Org. Coat., 2012, vol. 74, pp. 645–647. DOI: https://doi.org/10.1016/j.porgcoat.2011.09.030

28. Benjwal P., Kar K. K. Removal of methylene blue from wastewater under a low power irradiation source by Zn, Mn co-doped TiO2 photocatalysts. RSC Advances, 2015, vol. 5, pp. 98166–98176. DOI: https://doi.org/10.1039/C5RA19353B

29. Sekhar M. C., Reddy B. P., Vattikuti S. V. P., Shanmugam G., Ahn C.-H., Park S.-H. Structural, magnetic, and catalytic properties of Mn-doped titania nanoparticles synthesized by a sol–gel process. J. Cluster Sci., 2018, vol. 29, pp. 1255–1267. DOI: https://doi.org/10.1007/s10876-018-1437-8

30. Biesinger M. C., Payne B. P., Grosvenor A. P., Lau L. W. M., Gerson A. R., Smart R. St.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides : Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci., 2011, vol. 257, pp. 2717–2730. DOI: https://doi.org/10.1016/j.apsusc.2010.10.051

31. Jing M., Li J., Han C., Yao S., Zhang J., Zhai H., Chen L., Shen X., Xiao K. Electrospinning preparation of oxygen-deficient nano TiO2 ? x/carbon fibre membrane as a self-standing high performance anode for Li-ion batteries. Royal Society Open Science, 2017, vol. 4, article ID 170323. DOI: https://doi.org/10.1098/rsos.170323

32. Andreozzi G. B., Cellucci F., Gozzi D. High-temperature electrical conductivity of FeTiO3 and ilmenite. J. Mater. Chem., 1996, vol. 6, pp. 987–991. DOI: https://doi.org/10.1039/JM9960600987

33. Siwiсska-Stefaсskaa K., Kur B. A composite TiO2-SiO2-ZrO2 oxide system as a high-performance anode material for lithium-ion batteries. J. Electrochem. Soc., 2017, vol. 164, pp. A728–A734. DOI: https://doi.org/10.1149/2.0911704jes

34. Liu H.-L., Zhao W., Li R.-Z., Huang X.-Y., Tang Y.-F., Li D.-M., Huang F.-Q. Facile synthesis of reduced graphene oxide in-situ wrapped MnTiO3 nanoparticles for excellent lithium storage. J. Inorg. Mater., 2018, vol. 33, pp. 1022–1028. DOI: https://doi.org/10.15541/jim20180143

35. Guo S., Liu J., Qiu S., Liu W., Wang Y., Wu N., Guo J., Guo Z. Porous ternary TiO2/MnTiO3/C hybrid microspheres as anode materials with enhanced electrochemical performances. J. Mater. Chem. A, 2015, vol. 3, pp. 23895–23904. DOI: https://doi.org/10.1039/C5TA06437F

36. Lei C., Gou Q., Li C., Zhang X., Zhang B., Huang D. Facile synthesis of porous ternary MnTiO3/TiO2/C composite with enhanced electrochemical performance as anode materials for lithium ion batteries. Energy Technology, 2018, vol. 7, iss. 5, 1899761(1–11). DOI: https://doi.org/10.1002/ente.201800761

37. Li T., Guo C., Sun B., Li T., Li Y., Hou L., Wei Y. Well-shaped Mn3O4 tetragonal bipyramids with good performance for lithium ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 7248–7254. DOI: https://doi.org/10.1039/C4TA05821F

38. Jian G., Xu Y., Lai L.-C., Wang C., Zachariah M. R. Mn3O4 hollow spheres for lithium-ion batteries with high rate and capacity. J. Mater. Chem. A, 2012, vol. 2, pp. 4627–4632. DOI: https://doi.org/10.1039/C4TA05821F

39. Zhang W., Gong Y., Mellott N. P., Liu D., Li J. Synthesis of nickel doped anatase titanate as high performance anode materials for lithium ion batteries. J. Power Sources, 2015, vol. 276, pp. 39–45. DOI: https://doi.org/10.1016/j.jpowsour.2014.11.098

40. Ur-Rehman A., Ali G., Badshah A., Chung K. Y., Nam K.-W., Jawad M., Arshadf M., Abbas S. M. Superior shuttling of lithium and sodium ions in manganese-doped titania/functionalized multiwall carbon nanotube anodes. $Na\-nos\-ca\-le$, 2017, vol. 9, pp. 9859–9871. DOI: https://doi.org/10.1039/C7NR01417A

Received: 
15.03.2019
Accepted: 
07.04.2019
Published: 
20.09.2019