ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Bulyukina V. A., Ushakov A. V., Churikov A. V. Functional Behavior of the Materials Based on Iron(II)–Lithium Phosphate with the Trifilite Structure in the Lithium Accumulatory System with Aqueous Electrolyte. Electrochemical Energetics, 2017, vol. 17, iss. 1, pp. 37-55. DOI: 10.18500/1608-4039-2017-17-1-37-55, EDN: ZCTEJF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 77)
Language: 
Russian
Article type: 
Article
EDN: 
ZCTEJF

Functional Behavior of the Materials Based on Iron(II)–Lithium Phosphate with the Trifilite Structure in the Lithium Accumulatory System with Aqueous Electrolyte

Autors: 
Bulyukina Viktoriya Aleksandrovna, Research Institute of Chemical Power Sources (Joint-Stock Company)
Ushakov Arseni Vladimirovich, Saratov State University
Churikov Aleksei Vladimirovich, Saratov State University
Abstract: 

DOI: https://doi.org/10.18500/1608-4039-2017-17-1-37-55

Among the electrode materials used or promising for use in the lithium-ion batteries, those that are in the range of potentials of water stability are noteworthy, and that determines the possibility of using the fireproof aqueous electrolytes in a lithium-accumulating system based on these materials. The functional behavior in the aqueous electrolyte of one of them, iron(II)-lithium phosphate with the trifilite structure, obtained by the high-temperature synthesis in the mechanically activated system, and the effect of additions of manganese(II), tin(IV) or tungsten(VI) oxides onto this behavior and trifilite structural parameters. It was shown that the modification with tin(IV) oxide is the most effective of the considered.

Reference: 

1. Kedrinsky I. A., Yakovlev V. G. Li-ionnyye akkumulyatory. Nauchno-populyarnoye izdaniye [Li-ion batteries. Popular Science Edition]. Krasnoyarsk, Platina, 2002. 268 p. (in Russian).

2. Marcinek M., Syzdek J., Marczewski M., Piszcz M., Niedzicki L., Kalita M., Plewa-Marczewska A., Bitner A., Wieczorek P., Trzeciak T., Kasprzyk M., Lezak P., Zukowska Z., Zalewska A., Wieczorek W. Electrolytes for Li-ion transport – Review. Solid State Ionics, 2015, vol. 276, pp. 107–126.

3. Maleki H., Deng G., Anani A., Howard J. Thermal stability studies of Li-ion cells and components. J. Electrochem. Soc., 1999, vol. 146, no. 9, pp. 3224–3229.

4. Arai H., Tsuda M., Saito K., Hayashi M., Sakurai Y. Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J. Electrochem. Soc., 2002, vol. 149, no. 4, pp. A401–A406.

5. MacNeil D. D., Lu Z., Chen Z., Dahn J. R. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J. Power Sources, 2002, vol. 108, no. 1–2, pp. 8–14.

6. Nanjundaswamy K. S., Padhi A. K., Goodenough J. B., Okada S., Ohtsuka H., Arai H., Yamaki J. Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics, 1996, vol. 92, no. 1–2, pp. 1–10.

7. Padhi A. K., Nanjundaswamy K. S., Goodenough J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, vol. 144, no. 4, pp. 1188–1194.

8. Huang H., Faulkner T., Barker J., Saidi M. Y. Lithium metal phosphates, power and automotive applications. J. Power Sources, 2009, vol. 189, no. 1, pp. 748–751.

9. Zhang Y., Sun C. S., Zhou Z. Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure. Electrochem. Commun., 2009, vol. 11, no. 6, pp. 1183–1186.

10. Ellis B. L., Town K., Nazar L. F. New composite materials for lithium-ion batteries. Electrochim. Acta, 2012, vol. 84, pp. 145–154.

11. Rousse G., Tarascon J. M. Sulfate-based polyanionic compounds for Li-Ion batteries: Synthesis, crystal chemistry, and electrochemistry aspects. Chem. Mater., 2014, vol. 26, no. 1, pp. 394–406.

12. Li W., McKinnon W. R., Dahn J. R. Lithium Intercalation from Aqueous Solutions. J. Electrochem. Soc., 1994, vol. 141, no. 9, pp. 2310–2316.

13. Li W., Dahn J. R., Wainwright D. S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994, vol. 264, no. 5162, pp. 1115–1118.

14. Li W., Dahn J. R. Lithium-Ion Cells with Aqueous Electrolytes. J. Electrochem. Soc., 1995, vol. 142, no. 6, pp. 1742–1746.

15. Manjunatha H., Suresh G. S., Venkatesha T. V. Electrode materials for aqueous rechargeable lithium batteries. J. Solid State Electrochem., 2011, vol. 15, no. 3, pp. 431–445.

16. Kim H., Hong J., Park K. Y., Kim H., Kim S. W., Kang K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev., 2014, vol. 114, no. 23, pp. 11788–11827.

17. Tian L., Yuan A. Electrochemical performance of nanostructured spinel LiMn2O4 in different aqueous electrolytes. J. Power Sources, 2009, vol. 192, no. 2, pp. 693–697.

18. Jayalakshmi M., Rao M. M., Scholz F. Electrochemical behavior of solid lithium manganate (LiMn2O4) in aqueous neutral electrolyte solutions. $Lan\-gmu\-ir$, 2003, vol. 19, no. 20, pp. 8403–8408.

19. Wang Y. G., Xia Y. Y. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system. J. Electrochem. Soc., 2006, vol. 153, no. 2, pp. A450–A454.

20. Wang Y. G., Luo J. Y., Wang C. X., Xia Y. Y. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: II. Comparison of LiMn2O4, LiCo1/3Ni1/3Mn1/3O2, and LiCoO2 positive electrodes. J. Electrochem. Soc., 2006, vol. 153, no. 8, pp. A1425–A1431.

21. Yuan A., Tian L., Xu W., Wang Y. Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte. J. Power Sources, 2010, vol. 195, no. 15, pp. 5032–5038.

22. Stojkovic I. B., Cvjeticanin N. D., Mentus S. V. The improvement of the Li-ion insertion behaviour of Li1.05Cr0.10Mn1.85O4 in an aqueous medium upon addition of vinylene carbonate. Electrochem. Comm., 2010, vol. 12, no. 3, pp. 371–373.

23. Deutscher R. L., Florence T. M., Woods R. Investigations on an aqueous lithium secondary cell. J. Power Sources, 1995, vol. 55, no. 1, pp. 41–46.

24. Yuan A., Zhang Q. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochem. Comm., 2006, vol. 8, no. 7, pp. 1173–1178.

25. Qu Q., Zhang P., Wang B., Chen Y., Tian S., Wu Y., Holze R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C, 2009, vol. 113, no. 31, pp. 14020–14027.

26. Ruffo R., Wessells C., Huggins R. A., Cui Y. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem. Comm., 2009, vol. 11, no. 2, pp. 247–249.

27. Tang W., Liu L. L., Tian S., Li L., Yue Y. B., Wu Y. P., Guan S. Y., Zhu K. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem. Comm., 2010, vol. 12, no. 11, pp. 1524–1526.

28. Ruffo R. La Mantia F., Wessells C., Huggins R. A., Cui Y. Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte. Solid State Ionics, 2011, vol. 192, no. 1, pp. 289–292.

29. Shivashankaraiah R. B., Manjunatha H., Mahesh K. C., Suresh G. S., Venkatesha T. V. Electrochemical characterization of polypyrrole- LiCo1/3Ni1/3Mn1/3O2 composite cathode material for aqueous rechargeable lithium batteries. J. Solid State Electrochem., 2012, vol. 16, no. 3, pp. 1279–1290.

30. Wang F., Xiao S., Chang Z., Yang Y., Wu Y. Nanoporous LiCo1/3Ni1/3Mn1/3O2 as an ultra-fast charge cathode material for aqueous rechargeable lithium batteries. Chem. Comm., 2013, vol. 49, no. 80, pp. 9209–9211.

31. Manickam M., Singh P., Thurgate S., Prince K. Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. J. Power Sources., 2006, vol. 158, no. 1, pp. 646–649.

32. He P., Liu J. L., Cui W. J., Luo J. Y., Xia Y. Y. Investigation on capacity fading of LiFePO4 in aqueous electrolyte. Electrochim. Acta, 2011, vol. 56, no. 5, pp. 2351–2357.

33. Minakshi M. Lithium intercalation into amorphous FePO4 cathode in aqueous solutions. Electrochim. Acta, 2010, vol. 55, no. 28, pp. 9174–9178.

34. Minakshi M., Singh P., Thurgate S., Prince K. Electrochemical behavior of olivine-type LiMnPO4 in aqueous solutions. Electrochem. Solid-State Lett., 2006, vol. 9, no. 10, pp. A471–A474.

35. Manjunatha H., Venkatesha T. V., Suresh G. S. Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium-ion battery electrode. J. Solid State Electrochem., 2012, vol. 16, no. 5, pp. 1941–1952.

36. Zhang M., Dahn J. R. Electrochemical lithium intercalation in VO2(B) in aqueous electrolytes. J. Electrochem. Soc., 1996, vol. 143, no. 9, pp. 2730–2735.

37. Wang F., Liu Y., Liu C. Y. Hydrothermal synthesis of carbon/vanadium dioxide core-shell microspheres with good cycling performance in both organic and aqueous electrolytes. Electrochim. Acta, 2010, vol. 55, no. 8, pp. 2662–2666.

38. Wu C., Hu Z., Wang W., Zhang M., Yang J., Xie Y. Synthetic paramontroseite VO2 with good aqueous lithium-ion battery performance. Chem. Comm., 2008, no. 33, pp. 3891–3893.

39. Cheng C., Li Z. H., Zhan X. Y., Xiao Q. Z., Lei G. T., Zhou X. D. A macaroni-like Li1.2V3O8 nanomaterial with high capacity for aqueous rechargeable lithium batteries. Electrochim. Acta, 2010, vol. 55, no. 15, pp. 4627–4631.

40. Wang H., Huang K., Zeng Y., Zhao F., Chen L. Stabilizing cyclability of an aqueous lithium-ion battery LiCo1/3Ni1/3Mn1/3O2/LixV2O5 by Polyaniline Coating on the Anode. Electrochem. Solid-State Lett., 2007, vol. 10, no. 9, pp. 199–203.

41. Manickam M., Singh P., Issa T. B., Thurgate S. Electrochemical behavior of anatase TiO2 in aqueous lithium hydroxide electrolyte. J. Appl. Electrochem., 2006, vol. 36, no. 5, pp. 599–602.

42. Wang H., Huang K., Zeng Y., Yang S., Chen L. Electrochemical properties of TiP2O7 and LiTi2(PO4)3 as anode material for lithium ion battery with aqueous solution electrolyte. Electrochim. Acta, 2007, vol. 52, no. 9, pp. 3280–3285.

43. Sun K., Juarez D. A., Huang H., Jung E., Dillon S. J. Aqueous lithium ion batteries on paper substrates. J. Power Sources, 2014, vol. 248, pp. 582–587.

44. Gridina N. A., Romanova V. O., Churikov M. A., Churikov A. V., Ivanishcheva I. A., Zapsis K. V., Volynskiy V. V., Klyuyev V. V. Issledovaniye katodnogo materiala LiMnyFe1 ? yPO4 dlya litiy-ionnykh akkumulyatorov [Investigation of cathode material LiMnyFe1 ? yPO4 for lithium-ion batteries]. Elektrokhimicheskaya energetika [Electrochemical energetics], 2013, vol. 13, no. 4, pp. 181–186 (in Russian).

45. Kosova N. V., Devyatkina E. T., Petrov S. A. Fast and Low Cost Synthesis of LiFePO4 Using Fe3+ Precursor. J. Electrochem. Soc., 2010, vol. 157, no. 11, pp. A1247–A1252.

46. Jugovic D., Uskokovic D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sources, 2009, vol. 190, no. 2, pp. 538–544.

47. Karyakin Yu. V., Angelov I. I. Chistyye khimicheskiye veshchestva [Pure chemicals], 4th ed. Moscow, Khimiya, 1974, pp. 181–182 (in Russian).

48. Glemser O., Weidelt J., Freund F. Genotypische Oxidhydrate des Wolframs. Zur Frage der Wolframblauverbindungen [Genotoxic oxide hydrates of tungsten. On the question of tungsten blue compounds]. Zeitschrift fur anorganische und allgemeine Chemie [Journal of Inorganic and General Chemistry], 1964, vol. 332, no. 5–6, pp. 299–313 (in German).

49. Liu S., Yin H., Wang H., He J. Electrochemical performance of WO2 modified LiFePO4/C cathode material for lithium-ion batteries. J. Alloys Compd., 2013, vol. 561, pp. 129–134.

50. Andersson A. S., Kalska B. Haggstrom L., Thomas J. O. Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Moessbauer spectroscopy study. Solid State Ionics, 2000, vol. 130, no. 1, pp. 41–52.

51. Scherrer P. Bestimmung der inneren Struktur und der Gro?e von Kolloidteilchen mittels Rontgenstrahlen [Determination of the internal structure and size of colloid particles by means of X-rays]. In: $Kol\-lo\-id\-che\-mie$ [Colloid chemistry]. Ein Lehrbuch, 4 Aufl. Ed. by R. Zsigmondy, Leipzig, 1922, pp. 387–409 (in German).

52. Williamson G. K., Hall W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall., 1953, vol. 1, no. 1, pp. 22–31.

53. Galus Z. Teoreticheskiye osnovy elektrokhimicheskogo analiza. [Theoretical foundations of chemical electroanalysis]. Moscow, Mir, 1974, 552 p. (in Russian).

54. Ziolkowska D., Korona K. P., Hamankiewicz B., Wu S. H., Chen M. S., Jasinski J. B., Kaminska M., Czerwinski A. The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim. Acta, 2013, vol. 108, pp. 532–539.

55. Kulova T. L., Skundin A. M. Prostoy metod diagnostiki prichin degradatsii elektrodov pri tsiklirovanii litiy-ionnykh akkumulyatorov [A simple method for diagnosing the causes of electrode degradation when cycling lithium-ion batteries]. Elektrokhimicheskaya energetika [Electrochemical energetics], 2011, vol. 11, no. 4, pp. 171–178 (in Russian).

56. Marken F., Noydek A., Bond A. M. Tsiklicheskaya vol’tamperometriya [Cyclic Voltammetry]. Elektroanaliticheskiye metody. Teoriya i praktika [Electroanalytical methods. Theory and practice]. Ed. F. Scholz. Moscow, BINOM. Laboratoriya znaniy, 2010, p. 59–104 (in Russian).

Received: 
20.03.2017
Accepted: 
20.03.2017
Published: 
20.04.2017